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Abstract

We present an efficient and accurate method for searching for atomic configurations with target band structure

properties. Our approach to this inverse problem is to search the atomic configuration space by repeatedly applying

a forward solver, guiding the search toward the optimal configuration using a genetic algorithm. For the forward solver,

we relax the atomic positions, then solve the Schrödinger equation using a fast empirical pseudopotential method. We

employ a hierarchical parallelism for the combined forward solver and genetic algorithm. This enables the optimization

process to run on many more processors than would otherwise be possible. We have optimized AlGaAs alloys for

maximum bandgap and minimum bandgap for several given compositions and discuss the results. This approach

can be generalized to a wide range of applications in material design.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

With the increasing accuracy and efficiency of electronic structure methods, it is expected that one could
use the ability of these methods to predict properties of materials as a tool for designing materials. In this

paper we describe tentative steps in this promising direction; from a description of the properties desired of

a material, the atomic configuration of the material itself is automatically generated.
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Fig. 1. Illustration of the forward solving method for atomistically calculating electronic structure of crystalline objects such as a

semiconductor alloy.
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The automatic design problem is cast as an optimization problem. We define one or more properties we

wish the material to have, measure the extent to which a candidate material has them, then maximize this
quantity. The part of the process where we compute the property in question for a given configuration of

atoms we call the ‘‘forward solver’’, and the complete material design process is called the ‘‘inverse prob-

lem’’. Fig. 1 illustrates the method for solving the forward problem, typical in the electronic structure cal-

culation of materials. A three-dimensional atomic configuration is constructed to model a physical system

under study such as a bulk semiconductor, an alloy, or a quantum dot, and then the band structure is ob-

tained by solving the Schrödinger equation.

The inverse problem asks which atomic configurations produce the desired electronic properties. Previ-

ous attempts to solve the inverse band structure problem are described in [1–4]. Fig. 2 describes our ap-
proach to solving such inverse band structure problems using optimization based on a genetic algorithm.

The organization of this paper is as follows. In Section 2 we describe the forward solver and the genetic

algorithm based global optimization method which solves the inverse problem. Section 3 provides an illus-

trative application of the method in studying the variation of the bandgap of AlGaAs semiconductor alloys

with composition and atomic configuration. We conclude with Section 4.
Compute electronic structure

Create new solution

Evaluate Fitness

Relax atomic positions

Build a 3D atomistic model

Add children to population

Impose Constraints

Mutate and Crossover

Select parents

Create initial population

Fig. 2. Illustration of our inverse method. The left box represents the forward solver, and the right box represents the genetic algorithm

based inverse solver. An initial population is created. The fitness of each member is evaluated by the forward solver. From this

population and the fitness values, new individuals are created by the genetic algorithm. The population is updated and the process

repeated until an acceptable solution has been found.
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2. Method

2.1. Forward band structure method

Here we describe the framework for solving the forward problem based on the atomistic methods devel-
oped and popularized over the last 10 years [5–15]. This methodology is for calculating electronic structural

properties of semiconductor alloys and nanostructures involving hundreds to hundreds of thousands of

atoms. There are four elements to this methodology:

(1) generating the atomic configuration;

(2) relaxing the atomic positions;

(3) calculating the atomic potential;

(4) solving the Schrödinger equation.

Computationally, each step represents a program or routines that read different input files and generate

output files that are used in the next step.

First, an atomistic model (supercell) that represents an alloy or a quantum dot is generated. Typically

this is done by building a box with the underlying crystal structure and filling in the lattice points with atom

identities. Throughout this paper we will be performing alloy calculations for zincblende crystals, whose

underlying lattice is face centered cubic (FCC). Our unit cell is a cube containing eight atoms. The lattice

vectors are in the cartesian directions, so the supercell is a repetition of this cube nx, ny, nz times in each
cartesian direction, respectively. This rectangular block of sites is now filled with the atom identities.

For us, this step is performed by the genetic algorithm described below. We specify only the supercell size

and composition and the optimization method fills and manipulates its contents. Finally, the alloy is mod-

eled as the infinite periodic repetition of this supercell. Numerically, this just means that all the calculations

are performed with the periodic boundary conditions. We refer to the atomic configuration as r.
For a given r, the atomic position relaxation is performed via a classical valence force field (VFF) meth-

od. A secondary purpose of this step is to calculate the local strain and the nearest neighbor atom environ-

ment used to overlap the atomic pseudopotentials in the next step. Continuum elasticity theory gives good
estimates of cell external parameters for a supercell and we can use it to assign the overall lattice constants

for the modeled quantum dot or alloy [6]. However, it does not give any information as to the positions and

local strains of the atoms inside the supercell. To calculate the relaxed atomic positions within the supercell,

we use a generalization (generalized VFF, GVFF) [6,9] of the original [16] valence force field model. The

GVFF Hamiltonian (Eq. (24) in [6]) contains harmonic terms in bond length stretching, bond angle distor-

tion and coupled bond stretching and distortion, and an anharmonic term in bond stretching. The bond

stretching, bending, and length–angle interaction coefficients are related to the elastic constants of a pure

material in zincblende structure (see Eq. (25) in [6]).
For the AlGaAs alloy studied in Section 3 the positions of the atoms were assumed to be in their ideal

zincblende lattice sites because the lattice constants of AlAs and GaAs match closely. The lattice constants

for AlAs and GaAs were taken as that of GaAs, 5.653 Å which translates into a bond length of 2.436 Å.

For the bond angle, the ideal tetrahedral value of 109� is assumed. The atomic position relaxations for a

non-lattice-matching alloy, GaInAs, are described in [6].

The third step in our forward solver is the construction of the atomistic Hamiltonian using the empirical

pseudopotential method (EPM) [7–9]. When dealing with bulk-like atomic configurations that are free from

defects or surfaces, this method can provide an accurate description of the electronic structural properties
[1].

In principle the method is simple. The total potential of the alloy system is assumed to be the sum of

potentials centered at each atomic site. The potential at each site in the alloy is in turn assumed to be
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the linear combination of potentials representing the possible local environments of each atom in a pure

binary compound (e.g., As surrounded only by Al, or As surrounded only by Ga). These potentials are

of a specific functional form whose parameters are fitted to match data from experiment and/or local den-

sity functional theory calculations for the binary compounds contained in the alloy. We now describe some

of the details.
The total pseudopotential of the system is written as the sum of screened atomic pseudopotentials cen-

tered at the atomic positions [6]:
V psðrÞ ¼
X
n

X
i

viðr� Rn � diÞ; ð1Þ
where the sum over i is over all positions di within the supercell and the sum over n is over infinite periodic
repetitions Rn of the supercell. When we assume vi to be spherically symmetric (i.e., local in reciprocal lat-

tice vector G), we can write [7],
V psðrÞ ¼
X
n

X
i

viðjr� Rn � dijÞ: ð2Þ
If we now insert the Fourier transform of vi and use the fact that eiG�Rn ¼ 1, we have [7]
V psðrÞ ¼
1

X

X
i

X
G

eiG�ðdi�rÞviðjGjÞ; ð3Þ
where Vps is normalized by the volume X of the supercell.

Now assume that vi(q = |G|) is a function of the nearest neighbor environment. That is vi = va(i), where

a(i) specifies the local atomic environment at site i. For example, in our AlGaAs system, there are seven
such environments, which we divide into two groups: the four unalloyed environments au 2{AlAs, GaAs,

AsAl, AsGa} (where we write AB to indicate B atoms surrounded by A atoms) and the three mixed envi-

ronments am 2{AlnGa4 � nAs} for n = 1,2,3.

For each possible vauðqÞ, an analytical functional form is assumed and the parameters are fitted to repro-

duce the band structure properties. Specifically, the atomic pseudopotentials va(q) for the au local environ-
ments are assumed to be linear combinations of four Gaussian functions, multiplied by a smooth function

that allows adjustment of the small q components [7]:
vaðqÞ ¼ Xa

X4

j¼1

ajaecjaðq�bjaÞ2 ½1þ foae�baq
2 �: ð4Þ
Here, Xa is an atomic normalization volume. The parameters a, b, c, f, and b are fit to reproduce available

electronic property data such as measured interband transition energies, effective masses, and deformation

potentials of bulk GaAs and AlAs.

To take into account the effects of strain in the system, one adds dependence on the local strain � to the

pseudopotential va(q) [6,10]
vaðq; �Þ ¼ vaðq; 0Þ½1þ caTrð�Þ�; ð5Þ

where Tr(�) is the trace of the local strain tensor, which is calculated in the previous atom-relaxation step,

and ca is a fitting parameter. The description of local strain is given in [6,17].

From these unalloyed pseudopotentials, the pseudopotential for the mixed environment am of As

coordinated by (4 � n) Ga atoms and n Al atoms is taken as the composition-weighted average written

as [6],
vGa4�nAlnAs ¼
4� n
4

vGaAs þ
n
4
vAlAs: ð6Þ
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The number of nearest neighbor cations (anions) around each anion (cation) is calculated and used as input

from the previous atom-relaxation step.

Schematically, the potential for the whole material is constructed from the primitive, fitted, unalloyed

potentials as follows:
vauðqÞ ! vamðqÞ ! vaðiÞðqÞ ! vaðiÞðq; �Þ ! viðqÞ ! viðrÞ ! V psðrÞ:
The empirical pseudopotentials for the AlGaAs semiconductor studied in Section 3 are described in detail

in [7] (the complete EPM parameters are given in Table 1 therein). These pseudopotentials have been used

to study such systems as quantum films, wires, and dots in [11,12] and the inverse band structure problem

using simulated annealing in [1]. One takes into account accuracy, predictability, transferability and low

kinetic energy cut-off for efficiency when a set of empirical pseudopotential parameters are generated

[6–9]. The lattice constants of AlAs and GaAs are within 0.1% of each other; thus it is assumed that the
AlGaAs alloy system with their atoms at the ideal zincblende lattice sites are strain free. Therefore, both

ca and Tr(�) described above are set to zero. We note that it is possible to include spin–orbit interaction

and additional non-local pseudopotentials in this empirical pseudopotential model [6–9]. However, for

the AlGaAs system studied below the effects of the spin–orbit interaction are not significant so we will

not discuss these matters further here.

The fourth and final step in our forward solver is the actual solution of the Schrödinger equation written

as [6]
Hwi ¼ � 1

2
r2 þ

X
n

X
j

vaðjÞðr� Rn � djÞ
( )

wi ¼ �iwi; ð7Þ
where as above the sum runs over all the atoms at the lattice sites dj within the supercell whose origin is Rn

and all the possible infinite repetitions of the supercell. The atomic screened pseudopotentials va(j) are

calculated from the previous step. The wavefunctions are expanded in a planewave basis set. Since we

are interested in the states around the bandgap, we need not calculate all the eigenvalues. Instead, we

use the so-called ‘‘folded spectrum’’ method (FSM). In the FSM described in [13], we replace H by

H 0 ¼ ðH � �refÞ2, where �ref is an arbitrary reference energy such as the Fermi energy of the system. The

matrix H 0 has its smallest eigenvalues near �ref, so any eigensolver which finds the eigenvalues of H 0 in order

of magnitude will find the desired band edge eigenvalues first. Parallel implementation of the folded spec-
trum method (PESCAN) is described in [14]. In this implementation the eigenvalues are found by conjugate

gradient minimization of the Rayleigh Quotient Æw|H 0|wæ/Æw|wæ.
To summarize, our forward solver works as follows: We first construct a r specifying the identity and

ideal location of every atom in our system. Then we allow the atoms to relax to their equilibrium positions.

Next, we construct the atomic potential by overlapping pregenerated empirical pseudopotentials for each

atomic environment. Finally, we find the smallest several eigenvalues of the transformed matrix

H 0 ¼ ðH � �refÞ2. This gives us the eigenvalues near the band edges from which we calculate the bandgap

and related electronic properties.
These four steps are computed for each iteration of the optimization process for the inverse method de-

scribed below. Thus we would like our forward solver to be as efficient as possible. We now turn to a

description of our genetic algorithm based optimization method.

2.2. Inverse band structure method

Mathematically, the problem of finding the best atomic configuration with respect to a given property

is a global optimization problem. As in Section 2.1 let r be an atomic configuration; r completely
specifies the location and identity of every atom in the system. Now let P(r) be the property of the
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material we wish to optimize. For example, throughout this paper P is the bandgap of the material. We

suppose without loss of generality that we want to maximize P (the other obvious possibilities, minimize

P or achieve a target value of P, are easily converted to this form). Then our problem can be concisely

written
max
r

P ðrÞ:
However, this description of the mathematical problem is incomplete. We have used r in both mathemat-

ical terms as variables over which we maximize P and physical terms as atomic configurations. However,

these are not necessarily the same, and to be clear we must distinguish between them. So let n be the inde-

pendent variables in the problem, i.e., the variables whose best values we want to choose. For us n is a string
of numbers manipulated by the genetic algorithm. When we call the forward solver, these strings are
mapped to atomic configurations according to the geometry chosen for the evaluation (lattice type and

supercell size). There is no reason the variables over which we optimize need to be in a one to one corre-

spondence with atomic configurations. It is easy to imagine the strings manipulated by the genetic algo-

rithm representing a material indirectly, for example, as a sequence of compositions of layers of an alloy

superlattice rather than an atom by atom enumeration of the entire superlattice. See [3] for an interesting

such application. Representing the material indirectly in this way changes the space of variables being

searched. We can tune the size of the search space (thus the ability of our algorithm to actually find the

optimum) by representing the material in different ways. So in fact r is a function of n, and the optimization
problem is more correctly written
max
n

P ðrðnÞÞ:
Note, however, that in this paper we will always optimize over the full atomic representation of the mate-
rial; n does have a one to one correspondence with the atomic configuration, and r ” n. Henceforth we need

not refer to n, but it is important to keep in mind the dual role of r as variables over which we optimize and

representation of a physical system.

With n = r, we occupy an extreme end of a spectrum of possible approaches to the automated design of

materials in that both the forward and inverse solvers are working at the atomistic level. From the physical

standpoint this choice provides maximum computational accuracy and configurational potential. But it is

clear that this choice makes our optimization problem a difficult one. We are looking at the AlxGa1 � xAs

alloys. For a total number of atoms N, the composition x determines the numbers NAl, NGa, and NAs of the
constituent atoms. The problem amounts to choosing the locations of either the Ga or Al atoms from the

N/2 possible cation sites each could occupy, since choosing the locations of one determines the locations of

the other, and the anion locations are occupied only by As atoms. The number of ways to arrange the NAl

Al atoms among N/2 sites, for instance, is (‘‘N/2 choose NAl’’)
N=2

NAl

� �
¼ ðN=2Þ!

NAl!ðN=2� NAlÞ!
:

For all but the smallest of systems this is an extremely large number. For example, if x = 1/2, and letting

Nc ” N/2, the number of cation sites, we have NAl = Nc/2. Using Stirling�s approximation to the factorial

function, we find that the number of configurations is
N c

N c=2

� �
�

ffiffiffi
2

p

r
2N cffiffiffiffiffiffi
N c

p :
Even for a hundred cation system this number is roughly 1014 [1]. For a thousand cation system it is almost

10300. For different compositions, the number of configurations does not reduce to such a simple expres-
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sion. But we can easily compute it numerically. Fig. 3 shows the number of configurations as a function of

composition for 10, 100, and 1000 cation systems.

The actual number of nondegenerate configurations is reduced slightly due to the symmetry of the crys-

tal structure. Specifically, there are 48Nc symmetries in our system due to the 48 point group operations

of the cubic unit cell and the Nc possible translations between cations. However, in all but the smallest sys-
tems the reduction of the number of nondegenerate configurations due to symmetry is insignificant com-

pared to the shear number of total configurations.

The number of configurations scales as a factorial function of the number of constituent atoms. This

makes our optimization problem a combinatorial problem (a famous example is the notoriously difficult

traveling salesman problem). The fact that the space of variables over which we optimize is discrete is a

related important characteristic of our problem. There is no such thing as a derivative oP/or, so calculus

based optimization methods are inapplicable.

An approach to solving optimization problems with large configuration spaces is to exploit any decom-
posability that may exist in the problem. For instance, if we could divide the material into two spatial re-

gions such that the property P could be evaluated by separately evaluating it in the two regions. Then we

could solve the optimization problem separately in each part. For some atomic configurations the property

of bandgap has this decomposability. The electronic wavefunctions may be localized in one region of the

material and the bandgap determined by that region independent of the atomic configuration of the rest of

the material. But this is not in general the case. In general, the bandgap of a configuration depends in a

sensitive and nonlinear way on the position of each atom in the material.

Our problem is thus a large nonlinear combinatorial global problem. Unfortunately these are among the
hardest optimization problems to solve. There is no known method that reliably finds the optimal r in an

efficient manner. We have no choice other than to turn to a heuristic search algorithm. In [1] the simulated

annealing method was used to solve the bandgap maximization problem discussed here. We use instead a

genetic algorithm (GA). Genetic algorithms are inspired by the process of evolution in nature and originate

with the work of Holland and colleagues at the University of Michigan [18]. The basic ingredients of a ge-

netic algorithm are a ‘‘population’’ of potential solutions, a way of testing the ‘‘fitness’’ of any individual

solution, and a mechanism for generating new solutions from the existing population based on this fitness.

We have written a program, iaga (‘‘inverse method for alloys using genetic algorithm’’), that integrates the
Fig. 3. Number of configurations versus aluminum composition for the pseudobinary substitutional alloy AlxGa1 � xAs system

represented by supercells with the number of cation sites Nc equal to 10, 100, and 1000.
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parallel genetic algorithm package PGApack [19] and the ‘‘forward solver’’ PESCAN described above to

perform these steps.

2.2.1. IAGA – inverse method for alloys using genetic algorithm

Here we summarize the operation of iaga; details are discussed below. First, parameters and options for
the optimization are read in from an input file. Then an initial set of atomic configurations r are generated

randomly. This set is called the ‘‘population’’, and its members are called ‘‘individuals’’. Since in the genetic

algorithm the atomic configurations are represented by strings (i.e., lists) of numbers, the individuals are

also called ‘‘strings’’. Now we test the ‘‘fitness’’ of each individual. This occurs in two stages. First, a ‘‘func-

tional’’ value is generated (for example, by calling the physics package to compute, say, the bandgap of the

material). From the functional, the fitness of the individual is determined from what the ‘‘target’’ of the

simulation is, i.e., whether we are trying to maximize, minimize, or achieve a particular value of the func-

tional. This is the process of computing P(r). When each individual�s fitness has been evaluated, we gener-
ate a new population by selecting from among the more fit individuals and performing ‘‘crossover’’

(combining two individuals into a single new one) or ‘‘mutation’’ (creating a new individual from a single

existing one by randomly changing parts of it). These new individuals replace the least fit of the existing

population, giving us the next ‘‘generation’’ of individuals. We repeat this process (thus the generations

are sometimes called ‘‘iterations’’) until a stopping criterion (such as reaching a certain number of gener-

ations) is reached. This is the process of maximizing P(r). Figs. 4 and 5 illustrate the above procedure.

We now discuss some of the details of the method.

Since there are many variants of genetic algorithm, we first describe our choices for some of the most
basic features. The two common population models in the field [19,20] are (1) the ‘‘steady-state model’’,

in which only a portion of the population is replaced at each iteration, and (2) the ‘‘generational model’’,

in which the entire population is replaced at each iteration. In PGAPack the number of individuals replaced

each generation is a parameter, so PGAPack supports both models. Most of our runs use the steady state

model with the number of individuals replaced per generation approximately 10% of the population. In

Section 2.2.2 we examine the choice of this parameter more closely.
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Fig. 4. Features of a genetic algorithm: the population, the generation, and population evolution by mutation and crossover. Left:

Each row represents an entire population. The two boxes on the far right represent the newly created individuals, which replace the

worst two individuals in the current population to form the new population (the next row). In this example the population size is eight,

and the number of individuals replaced per generation is two. Right: The string-of-atomic-numbers representation of a pseudobinary

alloy such as AlxGa1 � xAs amounts to a binary string. The crossover operation (involving both the left hand strings) creates one new

individual from two parents. The mutation operation (involving only one parent) creates a single new individual by swapping atoms of

the parent.
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Our selection method is ‘‘binary tournament selection’’, in which parents are selected by taking the more

fit of two randomly selected individuals. Furthermore, we do not implement ‘‘survivor selection’’ [20]; all

newly created individuals enter the population, regardless of their fitness.
PGAPack allows individuals created by crossover to also undergo mutation. We have turned this feature

off, so individuals are created by either mutation or crossover. The percentage of the new population that is

created by crossover is determined by the ‘‘crossover rate’’, which for all runs in this paper has been set to

0.8, slightly below the PGAPack default value of 0.85.

We now consider issues related more directly to our particular problem. First, it is well known that the

representation of an individual is critical to the success of a genetic algorithm [20,21]. For example, opti-

mization of continuous functions of real variables is made more difficult by representing the real number

variables in binary, as changing one bit in a binary representation of a real number does not continuously
change the value of the number represented. Our representation of an alloy supercell as a string of atomic

numbers amounts, for the case of a pseudobinary alloy such as AlxGa1 � xAs, to a classic bitstring repre-

sentation. It might be argued that we have ignored the three-dimensional geometric nature of the objects

(namely, semiconductor alloy supercells) we are trying to evolve. While there is some merit in this point

of view, it is important to keep in mind the extremely complex relationship between the arrangement of

the atoms and the electronic properties we calculate. Specifically, the electronic eigenstates are nonlocal

properties involving the positions and identities of all the atoms. There is no reason to suppose that ‘‘build-

ing blocks’’ of good solutions are necessarily spatially related to one another. We point out, then, that in the
absence of a priori knowledge of the structure of the fitness function, we have specifically chosen a repre-

sentation (bitstrings) and form of crossover (uniform crossover) that are not spatially biased.

Next, we have introduced the problem without constraints. However, in reality we do wish to constrain

the space of configurations we explore. Specifically, we may want the composition of the alloy conserved.

The composition is the relative proportion of each of a set of cations or anions making up the alloy. For the

pseudobinary alloys considered here it is the single number x in AlxGa1 � xAs. Given a supercell (and lattice

type, which will be FCC throughout this paper), x determines the number of each type of cation atom in the

material. Now, the mutation and crossover operations, by randomly changing one atom to another, can
change the number of each cation atom in the supercell. In some cases (in fact, in all cases in this paper)

we want to prevent this situation. Iaga utilizes two mechanisms to accomplish this goal. The first is to

implicitly conserve composition by strongly penalizing individuals whose compositions do not match that
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specified in the input file. We add to the functional a term that results in a low fitness for individuals whose

composition is not conserved. This is an implicit method because we do not specifically proscribe individ-

uals that violate our initial composition from appearing in the population. We simply force them out by

ensuring that they are unfit. The second mechanism is to explicitly ensure every individual conserves com-

position. We discuss this separately with respect to mutation and crossover.
Iaga (through PGAPack) implements two forms of mutation. In both, each atom of the configuration

undergoes mutation with a probability rm (the ‘‘mutation rate’’). In the first type, an atom selected for

mutation is simply replaced randomly by another atom. In the second, an atom selected for mutation is

exchanged with another. Only in the latter case is composition necessarily conserved. This composition-

conserving form of crossover has been used in all the computations reported in this paper.

Crossover is the process of combining two individuals (the ‘‘parents’’) to form another (the ‘‘child’’). In

iaga, the form of crossover used is ‘‘uniform crossover’’. For each lattice site in the child, the corresponding

atom in the first parent is chosen with probability rc (the ‘‘uniform crossover probability’’); otherwise the
corresponding atom in the second parent is chosen. Note that we require the parents and child to have the

same number of atoms. More importantly, note also that this operation is not guaranteed to conserve com-

position. In order to explicitly constrain composition, we add a further step to the crossover operation that

in a systematic way (that is, in a way that as much as possible results in an individual that really is the result

of the crossover of the two parents) guarantees conservation of composition.

We have mentioned the degeneracy in configurations due to symmetry, and noted that the size of the

configuration space is not reduced significantly by taking into account symmetry. However, from the stand-

point of crossover, it may be useful to take into account the ‘‘distance’’ between two parents; specifically,
we have implemented a system that translates one of the parents to the equivalent configuration that has the

most in common with the other parent. In this way we maximize the chance of ordered structures being

carried forward to the next generation [22].

Both PGAPack and PESCAN are parallel programs. Iaga is thus a ‘‘hierarchical parallel’’ program. The

available processors are divided into groups in two ways based on the number of processors per functional

evaluation (PESCAN) specified. First, they are divided into a set that will only perform PESCAN calcula-

tions and a set that will also interact with PGAPack (the ‘‘GA group’’). Second, they are divided into ‘‘func-

tional groups’’ that will together perform a particular functional evaluation. Each of the members of the
GA group becomes the head node of a functional group. The root node performs all the intergenerational

tasks: selection, mutation, and crossover. Fig. 6 illustrates the parallelism employed here.

2.2.2. Genetic algorithm parameter studies

A genetic algorithm is controlled by a multitude of options. The PGAPack User�s Guide, for instance,

lists 38 different parameters that one can adjust. We will not attempt to analyze them here. The optimiza-

tion of genetic algorithm parameters is a field unto itself. Here we will concentrate on five parameters in

particular that have a large impact on the effectiveness of the algorithm. They are:

� population size;

� total number of generations;

� number of new individuals created at each generation;

� uniform crossover probability;

� mutation rate.

The optimization of these parameters involves inevitable tradeoffs. Given a fixed computational budget,
that is, an amount of time we are willing to wait for our computation to finish, we can use a large popu-

lation for a small number of iterations, or a small population for a large number of iterations; or we can

maximize both by replacing only a small number of individuals in each generation. The choice of uniform
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Fig. 6. Hierarchical parallelism in iaga. Shown are the processor groupings for four different (number of processor, number of

functional groups) combinations, (clockwise from upper left) (4,2), (8,4), (24,6), and (4,1). Each circle represents one processor. The

black circle is the master processor, which manages all intergenerational tasks (e.g., selection, mutation, and crossover). Each column

represents a group of processors that evaluates the functional of one individual in parallel (a ‘‘functional group’’). Two processors per

functional group are indicated in top two groupings and four in bottom two groupings. The top row of processors is the ‘‘GA group’’;

these are the the head nodes for their respective functional groups (the columns). The parallel genetic algorithm distributes evaluation

of the population to the members of the GA group, each of which then distributes the evaluation of a single functional to the functional

group for which it is the head node. Operations within one functional group are independent of and thus performed in parallel with

operations within another functional group. Note that if there are more than two functional groups, the master processor is not part of

a functional group and does not participate in electronic structure evaluations but only manages the genetic algorithm.
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crossover probability and mutation rate is also a tradeoff. For low uniform crossover probability and muta-

tion rate, we see rapid convergence of the bulk of the population to a similar set of solutions, but often they

are nonoptimal (they are ‘‘local extrema’’); for high rates, the population will retain a larger variety of

potential solutions (diversity), but it will have trouble converging to an optimal one. Though in certain spe-

cial cases the optimal value of some of these parameters can be established [23], the optimal choice of GA

parameters is, in general, an unsolved mathematical problem. Here we discuss some simple numerical
parameter searches we have performed in the context of an Ising model test case. The test case itself is

described in Section 2.2.3.

Fig. 7 shows the typical progress toward convergence of an entire population. An optimization by a ge-

netic algorithm typically has two phases, an ‘‘exploratory’’ or ‘‘global’’ phase during the early generations

followed by a ‘‘refinement’’ or ‘‘local’’ phase as the system nears convergence [24]. During the exploratory

phase, the population is diverse, and rapid improvement of the solution is typical. In the refinement phase,

the system is nearing convergence on one individual or a set of similar individuals, and improvement of the

solution slows. By changing the mutation rate and uniform crossover probability, one can tune the length
of the exploratory phase [22].

The genetic algorithm is fundamentally stochastic. Each run is different unless we explicitly set up our

random number generator to repeat a previous run. As is the case with all heuristic search algorithms, there

is no guarantee of finding the global optimum. But through better parameter selection we can at least hope

to maximize the probability of finding a solution acceptably close to the global optimum in an acceptable

amount of time. To this end, our studies allow us to make several remarks:

(1) We are best served by running an optimization from the beginning several times rather than putting
all our computational resources into a single long optimization run. Fig. 8 illustrates this point.



Fig. 7. Functional value versus GA generation for optimization with simple cubic Ising Hamiltonian for 125 cation atoms. Each

member of the population for each generation is represented by a point. The curve shows typical progress toward convergence of the

entire population. Since we do not use ‘‘survivor selection’’ (all newly created individuals enter the population, regardless of fitness),

the plot shows many individuals far below the maximum, even near the end of the run.

Fig. 8. The paths to convergence of several repetitions of the same optimization. Each run has a different random initial population,

but all other parameters are the same for each run. The convergence of the algorithm does not imply the discovery of the global

optimum. Note the sudden jump of a run near generation 1600 after seeming convergence.
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(2) Population sizing for genetic algorithms is a well studied issue. Most theoretical treatments derive an

exponential dependence on system size [25] for their chosen, analyzable system although under certain

assumptions this can be reduced to a linear dependence (see Section E1.1 in [21]). Our purely empir-

ical study suggests that in our case the optimum population size is a linear function of the system size.
Fig. 9 shows the optimum population size computed for a series of system sizes. The optimum pop-

ulation was defined as the smallest population that achieved the best average value over 10 runs. The

runs were allowed to run until convergence (no change in best fitness value for 100 generations, or

99% of the population with the same fitness value) or a maximum of 100,000 evaluations. The smaller

systems all converged before the evaluation limit, so for these, the time taken to reach these values was

a factor in determining which population size was deemed best. However, for the larger systems, the



Fig. 9. Optimal population size versus system size for maximization of an Ising model test case.
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evaluation limit was encountered, so these best populations are not fully converged (i.e. the average

value for even the best population size is not the global optimum). The study suggests that the opti-

mum population size thus defined is roughly four to five times the number of atoms. In general the
population should be neither extremely small nor extremely large. Small populations have insufficient

diversity, while extremely large populations have such a high proportion of bad solutions that the

algorithm fails to pick out the better ones.

(3) For a fixed computational budget (number of allowed functional evaluations), the best functional

value achieved shows an interesting dependence on the number of individuals replaced per generation

nr. In Fig. 10 we show the functional value versus population size for a range of population sizes for

an Ising model on a 6 by 6 by 6 simple cubic supercell lattice with 216 cations and a maximum total

functional evaluations of 65,536. The plot reveals that for the optimum population of 1024, a wide
range of nr works well, but that for smaller populations, performance improves with increasing nr,

while for larger populations, performance is generally bad, and degrades with increasing nr. The

explanation for these results is that for small populations, the system is struggling to maintain diver-

sity, so the increased diversity provided by increased nr helps. For large populations, the system rap-

idly reaches the limit of allowed functional evaluations. For the largest population size, there is only

one iteration, and the search reduces to a random sampling. In this case the fewer individuals we

replace, the more iterations we can perform, and the more able the system is to refine the high quality

solutions in the population. The optimum population represents a balance between the forces of glo-
bal exploration (requiring diversity) and local refinement (requiring many iterations).

(4) In the genetic algorithms literature it is widely recommended [19] and in some cases proved [23] that

for a system of size N, a mutation rate rm of roughly 1
N should be used. We have performed two tests of

mutation rate rm and uniform crossover probability rc. First, typical in a real application, we imposed

a fixed computational budget of 30,100 functional evaluations. Here we find that as expected, lower

mutation rates (roughly 1/N) find better solutions faster. Fig. 11 shows the results of this test. In our

second test, we let the system run ‘‘until convergence’’ for a variety of rm and rc. Our measure of full

convergence was that the best fitness achieved had not changed for 100 generations or that the fitness
of 99% of the population was the same. Under these rather demanding stopping criteria the final

functional value was not found to be sensitive to uniform crossover probability and mutation rate.

Fig. 12 shows the results of varying these rates. Neither the value of the functional nor the time it took

to reach it varied appreciably. Despite being unrealistic in a practical setting, this test is important,



Fig. 10. Final functional value versus population size for different choices of number of replacements nr (legends on the right) arrived

after optimizations for a 6 by 6 by 6 simple cubic supercell with a fixed computing budget of 65,536 evaluations. The poor performance

for nr = 1023 relative to nr = 1000 for population size 1024 is most likely a statistical aberration despite our averaging over 5 runs.

Fig. 11. Parameter study for Ising model test case, 4 by 4 by 4 supercell (64 atoms), for a fixed limit of 30,100 functional evaluations.

Left: Value achieved at convergence for a grid of mutation rate and uniform crossover probability (‘‘Crossover prob’’ in the figure).

Shown is the best value achieved over 4 runs. The ‘‘flat top’’ is the optimum functional value; runs were stopped if and when they

achieved this value. This figure illustrates the fact that if we want to converge faster, lower mutation rates are advantageous. The

population size was 100; the number replaced per generation was 30. Right: Time to convergence (in units of generations). The ‘‘flat

bottom’’ at higher mutation rates, exhausted the computing limit we have imposed, 1000 generations.
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since it is hard to distinguish convergence to the global optimum from long plateaus in the functional

versus generation curve. Note, however, that we are not making the much stronger claim that muta-
tion rate and uniform crossover probability have no effect; this claim is already refuted by our first

test. We claim only that at least for this particular problem (and we make no assertion of universal-

ity), if one allows the system to fully converge, the final functional values do not vary appreciably with

mutation rate and uniform crossover probability. Given enough time, the system finds its way out of

all local optima. In either case the length of the exploratory phase of the optimizations does depend

on these parameters; a lower mutation rate causes the system to begin to converge sooner. However,



Fig. 12. Parameter study for Ising model test case, 6 by 6 by 6 simple cubic supercell (216 cation atoms). Left: Value achieved at

convergence for a grid of mutation rate and uniform crossover probability (‘‘Crossover prob’’ in the figure). Shown is the best value

achieved over 10 runs. From this figure we infer that at least for the Ising model, and as long as we are willing to let the system run to

convergence, there is not an extremely sensitive dependence of the algorithm on these parameters. The population size was 864; the

number replaced per generation was 128. Right: Time to convergence (in units of generations).

K. Kim et al. / Journal of Computational Physics 208 (2005) 735–760 749
we just do not find the final convergence as defined above to be dependent on these rates. We do not

want fast convergence if that convergence is only to a local optimum. Further tests reveal that in some

cases mutation and crossover functions are interchangeable. If both rates are too low, the system con-
verges prematurely. But if both rates are too high, the system never finds high quality solutions. We

need at least one of these rates to be large in order to inject diversity into the population and at least

one to be small in order to refine reasonably good solutions into the optimal or near optimal solutions

we desire. Our experiments suggest either parameter can perform either function.

(5) The choice of number of generations to run is also a matter of computational budget. If we have cho-

sen the other parameters as best we can, we can let the optimization run for as long as we are willing

to wait, look at the data to see if the results are acceptable, then restart the algorithm from where it

stopped. Iaga has a built in restart mechanism which saves and restores the random number state of
the system, so stopping the run and then restarting it again has no effect on the data generated.

To summarize, then, we adopt the following simple strategy: For system size N, choose population size

roughly equal to 5N. Then let the number replaced per generation be 10% of the population size. Choose

reasonable small values such as 1/N for mutation rate and 0.25 for uniform crossover probability. Run the

optimization until the number of functional evaluations is roughly 10 times the population size. Restart and

continue if necessary. If the onset of convergence is detected (flattening of the functional value versus gen-

eration curve) before a high quality solution has been found, repeat the entire run.

2.2.3. Ising model test case

The forward band structure problem is computationally expensive, since the thousand or so functional

evaluations necessary to perform a bandgap optimization for even a small system may take several hours.

For this reason we have implemented an Ising model test case. The same optimization can now be per-

formed in only a few seconds. The functional value is computed from the model Hamiltonian
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where the sum over i is over all lattice sites, and the sum over j (for each i) is over the nearest neighbors of
lattice site i. For this model the ‘‘nearest neighbors’’ are those of the same ion type (i.e., cation–cation and

anion–anion). Jij is a coupling constant. Here we take a constant interaction Jij = J. The ‘‘spins’’ ri are de-
fined by what atom occupies site i. For our simple test case, ri is 1 if site i contains aluminum, �1 if it con-

tains gallium. The arsenic atoms are assigned zero spin. It is important to note that this test case implements

a different functional than that of bandgap, which implies that the optimization problem may be quite dif-

ferent in the two cases. Therefore, we should be wary of putting too much emphasis on it. We use it only for

debugging the often complicated series of steps required to manipulate the atomic configurations and for

getting rough ideas of the best values of some of the key parameters as described above.
The Ising model test case is implemented for simple cubic (SC) and face centered cubic (FCC) lattices.

All the test results reported above are for the simple cubic case, in which there is a cation at the corner of

each 1 by 1 by 1 cube of the supercell. The anion, located at the center of each of these cubes, has no effect

on the functional value. This of course is not the case for the bandgap functional discussed in Section 3.

Before attempting to run the full electronic structure optimization described in Section 3 we have max-

imized and minimized the energy of the Ising system as a function of given fixed composition. The optimi-

zation is run in the same way for the bandgap energy optimization in Section 3.2. Fig. 13 shows the

functional (energy) optimized for the Ising Hamiltonian. Fig. 14 shows the optimized configurations at
50% composition.
3. Bandgap energy optimization of AlGaAs alloys

To explore our method on a substantive yet relatively well studied problem, we have used iaga to exam-

ine the bandgap of AlxGa1�xAs alloys. First, primarily to understand the typical dynamics of the optimi-

zation process, we discuss the optimization of bandgap for a few supercells of particular single composition
specified by x. Next we look at bandgap versus composition, which involves solving both the maximum and

minimum bandgap problem for a range of compositions. Some preliminary remarks frame the discussion.

For two reasons, we fix the composition x for each single optimization run. First, real materials need

compositions which are lattice matched to within a few percent to the substrate on which they are grown,
. Composition dependence of ferromagnetic (J = 1, left) and antiferromagnetic (J = �1, right) energies for the Ising test case on

le cubic lattice with 64 cation atoms.



Fig. 14. Configurations of ferromagnetic (J = 1, left) and antiferromagnetic (J = �1, right) ground states for the Ising model test case

on a simple cubic lattice with 64 cation atoms at 50% composition.
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so it is not reasonable that just any composition with the desired bandgap is acceptable. Though this is not

an issue for AlGaAs in particular (because AlAs and GaAs have the same lattice constant to within 0.1%),
it is an issue for most other alloys, so it provides a reason to focus on optimizations where composition is

fixed. Second and more importantly from the standpoint of optimization, allowing the composition to

change has more effect on bandgap than allowing the arrangement of atoms of a particular composition

to change does. Thus allowing the composition to change during, say, a maximization, the composition

would shift to the larger bandgap material, AlAs. We would find only that one or the other pure material

(AlAs or GaAs) had the higher bandgap.

Note, however, that if the optimum bandgap (over all x) occurs for 0 < x < 1, then iaga could solve the

nontrivial problem of finding what the optimum composition is. Relaxing the composition constraint in-
creases the size of the search space by roughly one order of magnitude, which is not significant compared

to the already large (e.g., 229) size of the space for a fixed composition. Preliminary tests with our Ising

model test case indicate that the system does hone in quickly on the optimal composition.

An important detail of the forward solver is that the eigenvalues found are those at a particular k point

in the Brillouin zone. That is, writing the wavefunction w in the Bloch form w(x) = uk(x) e
ikx, we have
ðH � �Þw ¼ ðH � �ÞðukeikxÞ ¼ eikxðHk � �kÞuk;
where [26]
Hk ¼
�h2

2m
1

i
rþ k

� �2

þ V ðrÞ:
This allows us to compute the band structure by finding the �k for a range of k points. To do so, one ex-

presses the wave function in a plane wave basis set, transform the Hamiltonian to a momentum space rep-

resentation, and solves the resulting matrix equation as described in Section 2.1. In this optimization, all the

computations are done at the C point k = 0.

Due to Brillouin zone ‘‘folding’’, the particular supercell we use for a run is of critical importance. Fold-

ing of the Brillouin zone happens when we repeat a primitive cell in one or more directions. A doubling in
physical space, for instance, halves the size of the Brillouin zone. The k points in the second half of the

original Brillouin zone are ‘‘folded’’ back into the first half toward the C point k = 0. In terms of Bloch
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functions, we have rewritten a wave function which was in terms of a k value outside the new first Brillouin

zone in terms of one which is in this zone: If k 0 = k + G where G is a reciprocal lattice vector and k and k 0

are inside and outside of the first Brillouin zone, respectively, then
wðxÞ ¼ uk0e
ik0x ¼ ðuk0eiGxÞeikx � ukeikx:
So, for example, if we define a supercell that is twice the size of the primitive cell in all directions, then the L

point k ¼ ð1
2
; 1
2
; 1
2
Þ2pa of the original cell of lattice constant a is folded back onto the C point k = (0,0,0).

Zone folding enters as follows. The method we use to find the bandgap is rather simple. For a known

reference energy below (above) the conduction (valence) band edge, we find the closest state above (below)

it. The bandgap is the difference between these energies. If we compute in a primitive cell, where no states

from other k points in the Brillouin zone are folded to C, all the bandgaps we find are direct bandgaps at C.
If, however, the supercell is actually not primitive, then the states from other points in the Brillouin zone

that are folded to C are also found when we compute the band edges ‘‘at C’’, so the bandgaps we find by

computing even at just one k point Cmay be indirect. In the case of a primitive supercell that forms a super-

lattice, i.e., a layered material, certain layerings allow the FCC primitive zone-edge k-points to fold to C. In
that case, the bandgaps that we report may be ‘‘pseudodirect’’, originating from the zone-folded level. With

respect to the actual supercell used, they are direct bandgaps. But, considering the nature of the wave func-

tions and the underlying FCC primitive cell, they may be actually indirect in optical character.

In this optimization we make no attempt to distinguish direct from pseudodirect bandgaps, but we men-
tion here that it is possible to do so. Our solver, in addition to the energy values, can also compute the cor-

responding wave function. By comparing the wave functions to known wave functions of, say, C or L or K

character, we can distinguish them. This is known as the method of majority representation [15]. Alterna-

tively, we can compute the optical transition probability, which is related to the moment Æw|p|wæ, which can

be computed from the wave functions. This information could be incorporated into our optimization

implicitly by penalizing those configurations whose bandgaps were not of the desired (e.g., direct) character.

In this work we are also not considering energetics, thus not considering the relative stability of the con-

figurations we discover. The reasons are twofold. First, our forward solver is efficient because it finds the
bandgap by calculating only two energy levels. The hundred or thousand levels necessary in a total energy

calculation would be impractical in the context of optimization. Second, modern experimental techniques

involving metastable phases have progressed to the point where many less energetically favorable materials

can be grown, so it is increasingly possible to pursue optimization of electronic properties separately from

minimization of total energy.

We now turn to our two optimization studies, first of single bandgap optimizations, then, building on

that, an examination of possible bandgaps as a function of composition.

3.1. Dynamics of bandgap energy optimization of AlGaAs alloys

We present three examples of bandgap optimization. The first is run in a 192 atom cell and failed to

reached the global optimum after 9000 functional evaluations, but it allows us to point out some features

of the typical trend of a GA simulation. The second and third were run in 64 atom cells and reached the

global optimum. Comparing these to each other and the first run involves aspects of both the optimizer and

the electronic properties of the AlGaAs semiconductor alloy.

First, Fig. 15 shows the bandgap versus genetic algorithm generation for a typical iaga run. The partic-
ular problem is the bandgap maximization of an Al0.25Ga0.75As alloy. The supercell is 4 by 3 by 2, making

this a 192 atom system (with 96 cations). After 600 generations, the maximum bandgap discovered is

1.855 eV. Shown are the bandgaps for every member of every population.

As in Section 2.2 (see Fig. 7) the plot shows two fairly distinct regimes. For the first 100 or so generations

we see a wide variation in the bandgaps at a particular generation, and rapid improvement in the bandgap



Fig. 15. Bandgap vs generation for maximum bandgap optimization of Al0.25Ga0.75As in a 4 by 3 by 2 supercell. This is the general

shape of genetic algorithm optimization curves. They change rapidly and then slow down and reach a plateau. The best fit value at the

onset of the plateau at 120 iterations is 1.853. A better convergence criteria could have stopped the optimization run here to save

iterations. Note that this run did not find the global maximum. A better strategy would be to stop at the onset of convergence and start

again with a new random population.
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value. After that, the curve flattens, and the bandgap values are mostly close to each other. The ‘‘dots’’ of

lower bandgap in this second phase are newly created members of the population whose bandgaps are not

optimal. They will be among the first to be replaced in the next generation. As noted in Section 2.2, the

transition from an initial exploratory phase to a longer converging phase is typical of almost all global opti-
mization methods [24,27]. In the initial ‘‘global’’ or ‘‘exploratory’’ phase, the population contains a wide

variety of potential solutions; the optimizer is looking for which of the areas of the search space represented

by these individuals contains the global optimum. In the second, the ‘‘refinement’’ or ‘‘local’’ phase, the

system has already converged on a single region of the search space and is finding solutions which are small

variations within it [22].

We observe that the progress of a GA run almost invariably has such a transition to a flatter, converging

phase, and that the value of solutions at the beginning of this phase are usually within five percent of the

true optimum. With the goal of reducing the number of evaluations our forward solver must perform, we
are led to search for a stopping criteria based on detection of this transition and extraction of a desired

solution from the population at this point. Typically the desired solutions are ordered structures; these

are often the extremes observed experimentally, and these are what have been found by previous inverse

band structure calculations [1]. Investigations are ongoing into several approaches. For detection, we

can do some simple statistical analysis of the population such as computing the variation of the fitness val-

ues and stopping when it falls below a certain threshold. Or we can actually look at the configurations

themselves to see how similar they are. Problems here include taking into account symmetries in order

to measure similarity of configurations correctly and the fact that though these two regimes are the norm
it is possible for the curve to repeatedly flatten, then rise again, then flatten (see Fig. 8). More problematic

has been the extraction of meaningful (i.e., ordered) solutions from partially converged populations. We are

working on various tools to detect structure, periodicity, and other nascent signs of order [28]. However,

the subtle differences between randomness and two or more competing partial orderings are difficult to

analyze.

In Fig. 16, we show the progress of an Al0.25Ga0.75As bandgap maximization in a 4 by 2 by 1 (64 atom,

32 cation) supercell. There are over 10 million possible configurations (this run of iaga is not taking into

account symmetry), yet the optimum is found in 31 generations, which in this case was about 650 bandgap



Fig. 16. Bandgap vs generation for maximum bandgap optimization of Al0.25Ga0.75As in a 4 by 2 by 1 supercell. This run found the

global optimum, an (AlAs)1(GaAs)4(AlAs)1(GaAs)2 superlattice in the ½0�12� direction. Only 650 bandgap evaluations were needed to

find this solution.
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evaluations. Fig. 17 shows the results for bandgap minimization of Al0.5Ga0.5As in a 2 by 2 by 2 (also 64

atoms) cell. Both of these plots differ from Fig. 15 in the relatively discrete jumps being made as the solution
improves. This is of course due to the difference in supercell sizes. In the big cell, there are many many con-

figurations which have almost the same bandgap, so improvement is almost continuous. There are two rea-

sons for the discrete jumps in the smaller cells. The first reason is purely combinatorial. The configuration

space is smaller, and thus a change in one atom changes the configuration, thus the bandgap, more signif-

icantly in the smaller cell. The second reason is physical. We see that the effect is more pronounced as we

reach the optima because this is the point where the configuration achieves its final ordered state. In the

minimization case, in particular, the minimum is a ‘‘segregating state’’ (see below). When the genetic algo-

rithm puts the last atom in place, the resulting ordered structure is qualitatively different from the ones
which are even only one atom swap away, explaining the jump in one step of 75 meV to reach the final solu-

tion. Note also the range of the bandgaps through which the solutions evolve. In the maximization case, the

total range (from 1.851 to 1.865 eV) is only 14 meV, whereas in the minimization case, the range is approx-

imately 165 meV. This is explained by the fact that the random alloy bandgaps are actually much closer to

the maximum bandgaps than the minimum bandgaps (see Fig. 19).

Having explained much of the regularity of these plots, it is important also to keep in mind that the ge-

netic algorithm is fundamentally stochastic. We can expect a fair amount of irregularity when looking at the

progress of any one run. For example, the initial population in the maximization case happens to contain a
quite high quality solution (1.851 eV), so the shape of the whole curve is flatter than in the minimization

case. This is but one example (see, e.g., Fig. 8 for more evidence of variability from run to run).

For the purpose of comparing simulated annealing with our genetic algorithm, we have used iaga to

solve two of the AlxGa1 � xAs bandgap maximization problems solved by simulated annealing in [1]. First,

in Fig. 18 we show the progress of bandgap maximization of Al0.75Ga0.25As in a 64 atom, 1 by 1 by 32

supercell for both the genetic algorithm and simulated annealing. This is a one-dimensional problem.

We are searching the space of [001] oriented superlattices. The maximum bandgap configuration is an

(AlAs)3(GaAs)1 superlattice (see Table 1 in [1]). For this iaga run the number of individuals replaced each
generation was 15, so the total number of evaluations required to solve the problem was approximately

3000. Simulated annealing required approximately 4000 evaluations. Our second comparison is the band-



Fig. 17. Bandgap vs generation for minimum bandgap optimization of Al0.5Ga0.5As in a 2 by 2 by 2 supercell. This run found the

global optimum. Note the relatively large discrete jumps in bandgap as we reach the minimum. The minimum is a ‘‘segregating state’’

near which there is little degeneracy [29].
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gap maximization of Al0.25Ga0.75As in a 128 atom, 4 by 2 by 2 supercell. In this case the genetic algorithm

required approximately 3500 evaluations, whereas the simulated annealing algorithm (see Fig. 1b in [1]) re-

quired over 10,000 evaluations. We will not attempt further comparison between simulated annealing and

genetic algorithms. Others have attempted such studies [30,31], and there is no consensus that one or the

other is in general a better method. However, we point out that regardless of the performance of either
algorithm, the genetic algorithm has a distinct advantage from the standpoint of implementation. Because

it is so naturally parallelized, we can easily take advantage of the large number of processors in modern

high performance computers. Parallelization of simulated annealing is much more problematic.
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3.2. Bandgap energy versus composition of AlGaAs alloys

We now turn to optimizing bandgaps over a whole range of compositions. Composition dependence of

alloy bandgaps is often described by the ‘‘bowing curve’’
Fig. 1
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optimi
EgðAlxGa1�xAsÞ ¼ xEgðAlAsÞ þ ð1� xÞEgðGaAsÞ � bxð1� xÞ: ð8Þ

This equation describes the bandgap of an alloy as a composition-weighted average of bandgaps of constit-

uents with a quadratic correction of size determined by the ‘‘bowing parameter’’ b. This is an equation

whose origins are empirical, where it is assumed that the alloys in question are random alloys of a given

composition. In this section we explore the range of possible bandgaps achievable if the configurations

are not assumed to be random but are instead specifically optimized to maximize or minimize the bandgap.

We will see that the possible points in composition-bandgap space form not a curve but a region.

The following discussion refers repeatedly to Fig. 19. In this figure we show the results of a series of opti-

mizations performed with iaga. Each symbol on the graph represents a separate complete iaga run where we
have attempted to either minimize or maximize the bandgap of a particular composition. Recall that in

each run, the composition is explicitly conserved.

The dashed line represents the bandgap of random alloys. It is calculated by averaging over bandgaps of

a few randomly generated alloy configurations for each composition. The supercells used for these partic-

ular calculations were 12 by 12 by 12, with a total of over 13,000 atoms, so these are fairly good represen-

tations of truly random alloys.

The shaded regions are the available bandgaps of AlxGa1 � xAs alloys achievable by different atomic

configurations. The bandgap of random AlxGa1 � xAs alloys changes from direct to indirect below 0.55
Ga (x = 0.45) composition. The bending in the maximum bandgaps indicates the direct to indirect bandgap

transition. There is no transition in the minimum bandgaps, since due to the folding of the L point to C
discussed above, all of these bandgaps are either indirect or pseudodirect, derived from the zincblende L

state.
9. Bandgap of AlGaAs alloys. Dashed line: Bandgap of random alloys. Up-triangles: Maximum bandgaps. Down-triangles:

um bandgaps. The arrow indicates the direct to indirect bandgap transition composition for random alloys. The shaded regions

e available bandgaps of AlxGa1 � xAs alloys achievable by different atomic configurations. The solid lines with circles are

zation run with 4 by 3 by 2 cells which did not reach the optima (see text).
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Table 1 summarizes some of the optimal maximum and minimum bandgap configurations obtained with

the iaga method and discussed below. The maximum configurations are the same as the ones found in [1].

Figs. 20 and 21 show the corresponding atomic configurations.

The choice of supercell is critical and problematic. First, since we are interested in finding direct or indi-

rect bandgaps with a single bandgap computation only at C, the relevant k points must be folded to C as
discussed above. Second, the supercell must be an integral multiple of the primitive cell of the optimum

structure. For example, if the optimum structure has a 2 by 2 by 2 primitive cell, we will not be able to
Fig. 20. The atomic configurations for maximum bandgap corresponding to the entries in Table 1. These are a ½0�12�
(AlAs)1(GaAs)4(AlAs)1(GaAs)2 superlattice (SL) for Al0.25Ga0.75As, a ½0�12� (AlAs)2(GaAs)2 SL for Al0.5Ga0.5As and a ½0�12�
(AlAs)3(GaAs)1 SL Al0.75Ga0.25As. Red(dark) spheres are Al, green(light) spheres are Ga, smaller gray spheres are As atoms. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 21. The atomic configurations for minimum bandgap corresponding to the entries in Table 1. These are ‘‘X’’ Cmmm structure for

Al0.25Ga0.75As, a ½1�11� (AlAs)1(GaAs)1 superlattice for Al0.5Ga0.5As and ‘‘Luzonite’’ Cu3AsS4-type for Al0.75Ga0.25As. See [35] for

further descriptions of the ‘‘X’’ and ‘‘Luzonite’’ structures. Red(dark) spheres are Al, green(light) spheres are Ga, smaller gray spheres

are As atoms. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1

Optimal bandgap configurations of AlxGa1 � xAs alloys

Composition x Bandgap (eV) SL direction Superlattice layer sequence

Maximum bandgap configuration

0.25 1.86 ½0�12� (AlAs)1(GaAs)4(AlAs)1(GaAs)2
0.50 2.12 ½0�12� (AlAs)2(GaAs)2
0.75 2.18 ½0�12� (AlAs)3(GaAs)1

Minimum bandgap configuration

0.25 1.67 ‘‘X’’ Cmmm structure

0.50 1.79 ½1�11� (AlAs)1(GaAs)1
0.75 2.00 ‘‘Luzonite’’ Cu3AsS4-type
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represent it in a 3 by 2 by 2 supercell, even if zone folding is not important (e.g., the optima arises from a

direct bandgap at C). When we say that supercell A ‘‘contains’’ cell B, we mean not just that A is larger than

B but that the infinite periodic repetition of B can be represented as an infinite periodic repetition of A. For

example, 4 by 1 by 1 contains 2 by 1 by 1 in this sense, but 3 by 1 by 1 does not.

There are two obvious approaches to the problem of supercell choice. First, we can choose a single large
supercell which we presume will encompass all the relevant zone foldings and small primitive cells. Second,

we can perform runs in a series of smaller supercells, presuming that one of them will include the zone

foldings and primitive cell of the global optima. Fig. 19 shows results for two sets of supercells correspond-

ing to these two complementary approaches to this problem.

The set of runs in the large cell takes place in a 4 by 3 by 2 (192 atom) supercell. In the figure these are the

solid lines with circles; open circles are the maxima, filled circles are the minima. Our rationale for this par-

ticular choice is that while still small enough to attempt an optimization, this cell contains many of the

smaller supercells known from previous work [1] such as 4 by 1 by 2. For this cell we ran both maximiza-
tions and minimizations for composition x ¼ 1

12
i; i ¼ 1; . . . ; 11.

The set of runs in the small cells is shown as the triangles in the figure; up-triangles for maxima, down-

triangles for minima. We ran both minimizations and maximizations for x = 0.25, x = 0.50, and x = 0.75 in

a variety of supercells; these included (2 · 2 · 2), (4 · 2 · 1), (3 · 2 · 2), and (4 · 2 · 2). The cells in the fig-

ure, those in which the best solutions were found, are as follows: For the maximum case, for x = 0.25, a 4 by

2 by 1 supercell, for x = 0.5 and x = 0.75, a 2 by 2 by 2 supercell. For the minimum case, 2 by 2 by 2 super-

cells for all three compositions.

In the maximum case, the same solutions were predicted in [32] and found in previous inverse band
structure work by simulated annealing [1]. For the minima, the best results were all achieved in 2 by 2

by 2 supercells. The discussion of ‘‘segregating states’’ in [29] supports our observations. They find that

states can segregate such that some are localized on the GaAs sublattice and some are localized on the AlAs

sublattice. Thus, the lower GaAs-like state becomes the conduction band minimum. The calculated band-

gap approaches the C to L bandgap of GaAs, provided the zincblende L state is folded to C, since the L point

states are those showing the segregating GaAs-like character. And the smallest such cell is 2 by 2 by 2.

For the large cells, we can see from the figure that our choice of a 4 by 3 by 2 supercell did not result in

the global optima being discovered. If we compare this cell with those containing the optima found by the
second approach, this result is not surprising. For the maximum case, the 2 by 2 by 2 cells are simply not

contained (in the above sense) in the 4 by 3 by 2 cell, so it is not possible to find this solution. For the

x = 0.25 case, the large supercell does contain the 4 by 2 by 1 (i.e., a 4 by 2 by 1 cell is equivalent to a 4

by 1 by 2 cell, so it would fit in a 4 by 3 by 2 cell by repeating it 3 times in the y direction). So it is interesting

that it is simply the size of the search space, which not counting symmetry is 96
24

� �
� 1024 (including symme-

try reduces it to approximately 1019), that prevents us from finding the maximum. Note that the bandgap of

the solution we do find is quite close to the global maximum, while the structure is not obviously similar.

This is a common feature of heuristic search methods; they are good at finding high quality solutions, but
not necessarily as good at finding the actual global optimum.

For minimization within the 4 by 3 by 2 supercell, the best solution found is far from optimal. Minima

for small cells are ordered structures involving folding of the L point in the Brillouin zone to the C point

(the bandgaps are indirect or pseudodirect from C to L), while minima for large structures are phase sep-

arated (tending toward the bandgap of the lower bandgap material, which for us is GaAs). For the 4 by 3

by 2 cell the L point in the Brillouin zone does not fold to the C point, so these low indirect bandgaps can-

not be found by a computation which calculates electronic states only at the C point. The system finds the

next best solution for this intermediate sized cell and tries to segregate itself physically into separate regions,
each of pure material. These phase separated configurations are hard to achieve with simulated annealing.

The issue of supercell choice deserves further discussion. It would seem that a large enough supercell

would contain all of the relevant zone foldings, thus one run of iaga in a large supercell should reveal
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all the most important possible structures for a given composition. However, unless we use a prohibitively

large supercell, it is not true that big supercells reliably contain all the smaller cells in which the global op-

tima are contained. The only supercell containing all possible 8 atom unit cells is 8 by 8 by 8. This supercell

contains 4096 atoms [33]. The more subcells our chosen supercell contains, the larger the search space. In

fact, as the size of the supercell grows, the size of the search space grows much faster than the number of
subcells it contains. So once our supercell contains all the structures of interest, it is too large to search! This

is one of the important results of our efforts so far, and it provides the impetus for ongoing complementary

research into more systematic ways to search just the smaller structures. Whereas here we have a relatively

sophisticated algorithm searching a large space of possible configurations, this alternative approach in-

volves systematically generating all the possible structures with a certain size unit cell [34] and calculating

the bandgap for each. These unit cells are small but not necessarily orthogonal. For each we can calculate

the minimal orthogonal unit cell in which we could represent the same structure. The cells in which iaga

found the optima for the x = 0.25, x = 0.50, and x = 0.75 compositions contain the best structures we have
found by this alternate method. The problem of supercell choice highlights the need to be clear about the

goals of our optimization. If we are looking for a high quality solution, defined, say, as one which is within

five percent of the true optimum, we can generally find it by looking for it in a large cell. But to go further

toward the global optimum, we face a difficult situation. On the one hand, the optimizer cannot put the last

atom in place to find the global optimum when there are so many possibilities. On the other hand, it cannot

extract the ordered structures that may underlie the high quality but globally non-optimal solutions we can

find. So if we are interested in high quality ordered structures, we are best off performing separate optimi-

zations in each of a series of small supercells.
4. Conclusions

In this paper we have described our implementation of an efficient and accurate method for automated

material design. It incorporates an existing forward solver with a genetic algorithm based inverse solver.

The forward solver is an atomistic electronic structure calculation method with empirical pseudopotentials

used for semiconductor alloys and their superstructures. The inverse solver is a parallel genetic algorithm
based global optimization method which manipulates atomistic descriptions of populations of materials.

The forward and inverse solvers are separable; changes can be made independently to either without affect-

ing the other. Here we have studied the effects of different GA parameters and described a few strategies,

illustrating them with examples of optimization of an Ising model test case Hamiltonian. Further, we have

optimized AlGaAs alloys for maximum and minimum bandgaps and discussed the dynamics of the opti-

mization process. Finally, we have shown the whole range of available bandgaps of an AlGaAs alloy

achievable by different atomic configurations and compositions. We have discussed the important issue

of the system size – the supercell must be commensurate with that of the global optimum yet not so large
as to be unsearchable. This global optimization based approach can be applied to a variety of applications

in material design.
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